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Prediction of the thermal conductivity of 
insulation materials 

D. M. DAWSON, A. BRIGGS 
Materials Development Division, AERE, Harwell, Oxon, UK 

From a theoretical and experimental examination of thermal conductivity expressions 
proposed in the literature, a geometric mean equation is found to give predictions which 
most closely agree with experimental data for debased alumina materials with a range 
of porosities. Using the equation a computer program is developed which predicts 
conductivities of multi-component systems and presents data in the form of a three- 
component diagram with iso~onductivity lines. 

1. Introduction 
As energy costs increase, and become a more 
significant proportion of the total cost of processes 
and materials, an increased awareness of the need 
for efficient thermal insulation is developing. In 
addition to the application of insulation in pre- 
viously unconsidered parts of processes, there is 
also a move towards greater insulation efficiency in 
areas where insulation has traditionally been used. 
Consequently, in the former case materials may be 
subjected to new and possibly more severe con- 
ditions and in the latter case more demanding 
constraints are placed on their design. To satisfy 
these more stringent requirements, new materials, 
or new formulations of existing materials, are 
necessary. The properties required of suitable 
materials, such as low conductivity, adequate 
strength and thermal stability, are often incompat- 
ible, and a compromise must be sought which 
demands a composite materials approach. There is 
then a need for optimization of the designs of 
materials containing a number of components. If 
a simple method for predicting the conductivity 
of such materials were available, much fruitless 
experimental work could be avoided. 

Prediction of the thermal conductivities of 
multicomponent materials has been an aim of 
workers in the field for many years, and yet the 
construction of a model which accurately rep- 
resents real materials has proved to be difficult. 
This has been due, not to ignorance of the laws or 
mechanisms of heat transmission involved, but to 
the intractability of their application to sufficiently 
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realistic models. Many relationships based on 
experimental data, or theoretical models with 
various degrees of realism have been proposed 
[1-26] .  The purpose of the present paper is to 
select from these available models an expression of 
general applicability, which demonstrably gives 
reasonable agreement with experimental results, 
and can be used as a basis for the development 
of a computer program for the prediction of 
the thermal conductivities of multicomponent 
materials. 

2. Assessment of the mathematical models 
The approaches that have been used to predict or 
describe the thermal conductivities of materials 
containing more than one component can be 
classified in three basic groups: 

(a) Flux-law models [1-9] ;  
(b) Ohm's-law models [10-21] ; 
(c) Empirical relationships [22-27].  
Maxwell [1] developed a relationship between 

the electrical resistance of a material, its com- 
ponent resistances and their volume fractions using 
a flux-law method. The model considered spheres 
distributed in a matrix so that their electrical fields 
could be said to be non4nteractive, that is, that 
their separation distances were large compared to 
their radii, and, therefore, the volume fraction of 
the spheres was small. Although Maxwell's work 
[ 1] dealt exclusively with the electrical resistance 
of a composite it is equally applicable in the field 
of thermal conductivity, and has been quoted by 
many workers (e.g. [12, 27]) in that field. 
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Generally the flux-law approach derives the 
temperature gradient of one of the following model 
systems: 

(i) A regular array of spherical particles which 
may be in contact or dispersed. 

(ii) A random distribution of spheres dispersed 
in a matrix phase so that no interaction between 
the temperature fields of the particles occurs. 

Using these temperature gradients the effective 
thermal conductivity is established from the 
fundamental heat-conduction law, attributed to 
Fourier, which states that the heat flux is pro- 
portional to the temperature gradient 

q = - k V T ,  (1) 

where q is the heat flux, k is the proportionality 
constant, V is the thermal conductivity and T is 
the sum of the temperature gradient components 
along the Cartesian axes of the model. For one- 
dimensional heat transfer, therefore, Equation 1 
reduces to 

k dT  q = -  ~ - ,  (2) 

where x is distance. 
Equations 1 and 2 indicate the simplicity of the 

application of the flux law in obtaining the thermal 
conductivity of a system. A major problem, how- 
ever, is the determination of the temperature field 
inside a body. In the cases of the sphere arrange- 
ments described above, this problem is not in- 
surmountable, but for models which are more 
representative of real systems the solutions are 
complex. As a result the flux-law models developed 
are of relatively simple geometry and bear little 
resemblance to real multicomponent materials. 

This major draw-back gave rise to a greater 

interest in the Ohm's4aw models which are derived 
from an electrical analogue of a system of resist- 
ances, assuming one-dimensional hea t  transfer 
through a unit cell of material and, over the years, 
these models have been developed with increasing 
realism. Russell [10] developed one of the early 
model systems using the electrical analogy. He 
considered two extreme cases as shown in Fig. la 
and b. 

Using these two model systems Russell [10] 
derived two equations giving the relationship 
between the composite conductivity and the 
volume fractions and conductivities of the two 
components. For a continuous solid phase 

f~b q~Eza + kk_r _q~e/a) ] 
kr. = k,  - - -  , . "  - (3)  

2/3 - ~ + ,~-(1 r + r 

and for a continuous porous phase 

km= 

+ (1 _r _ l + ~ ( 2  - ~  - ( 1  _r 
Ks 

(4) 

where k m is the composite conductivity, k s is the 
solid-phase conductivity, kp is the porous-phase 
conductivity and r is the volume fraction of  the 
porous phase. 

It would be expected that a real system would 
be better described by a combination of both of 
these models, and would hence exhibit a conduc- 

( a )  ( b )  

Figure 1 The models proposed by Russell [10] to aid in the calculation of the thermal conductivity of a porous system. 
(a) shows a continuous split phase with isolated cubic pores. (b) shows a continuous porous phase with discontinuous 
cubic solid particles. 
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Figure 2 The Wyllie and Southwick [11 ] model of a 
conducting network of spheres in good electrical contact 
(shaded) and in poor or non-existent contact (unshaded) 
within a conducting matrix electrolyte. 

tivity somewhere between the calculated values of 
Equations 3 and 4. A model which combines all 
the possible elemental arrangements of the phases 
is therefore required. 

Wyllie and Southwick [11] developed a three- 
element resistor model for calculating the electrical 
conductivity of an aggregate of conducting particles 
in a conducting electrolyte. These three elements 
were considered to be: 

(a) particles and electrolyte in series; 
(b) particles in close contact, thus forming a 

continuous solid conduction path; 
(c) the electrolyte filling the interstices. 
This model is depicted in Fig. 2. In this, and 

all subsequent model diagrams the electrical or 
thermal flux will be from left to right. 

The model in Fig. 2 can be simplified to give a 
unit cell of the three parallel resistances described 
above, as shown in Fig. 3. 

Using this model Wyllie and Southwick [11] 
derived an equation which is a sum of weighted 
component elements: 

(a) 

Ib} 

(c) 

Fggure 3 The WyUie and Southwick [11] three-element 
resistor model. The letters refer to the text above (solid- 
phase shaded). 
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k m -  kskp ~- k--ap + k_~_s (5) 
xk s + ykp F Z ' 

where the definitions given [11] for x and y are 
that they are dimensionless parameters descriptive 
of the particle arrangement and the pore arrange- 
ment in the series component, Z is a dimensionless 
parameter descriptive of the particles in contact 
and F is the "formation factor" of the particles. 
An examination of Equation 5 and Fig. 3 indicates 
that 

1 
x + F pore vohime-fraction (6) 

and 

+ 1 = solid volume-fraction. (7) Y Z 

A problem in using Equation 5 is deciding the 
proportions of series and parallel components of 
solid and porous phases. 

Woodside and Messmer [12] adapted this model 
for the calculation of the thermal conductivities of 
two-phase systems and developed it to give a 
weighted mean equation of the form 

akskp 
k m =  ks(1 - -d )  + kpd + bks + ckp, (8)  

where the terms a, b, c and d are defined in Fig. 4. 
Dul'nev and Zarichnyak [14] derived an 

expression similar to Equation 8 with numerical 
values for the terms a to d 

~ksk p 1 
krn = ks~b + kp(1 --q~) ~- ~-(ks(1 - ~ )  + kpr 

(9) 

This expression is also attributed to Schuhmeister 
[28] who worked on the conductivity of textile 
fabrics. 

Figure 4 The Woodside and Messmer three-element resistor 
model. The letters refer to the text above (solid-phase 
shaded). 



Dul'nev [16] derived an equation for a unit cell 
of  different configuration consisting of interpene- 
trating components of the form 

a m ~-~ k s  

kp 2 ~-c(1  
+  (1-0 + , 

k~ 
(10) 

where c = AlL and A and L are defined in Fig. 5. 
For one-dimensional thermal conduction the 

model depicted in Fig. 5 reduces to the same 
unit cell as Fig. 4, and so, for the purpose of this 
work there is no advantage in using Equation 10 in 
preference to Equations 8 or 9. 

An alternative approach to Fig. 4 is to assume 
that the series and parallel components are arranged 
in a random fashion which, for a material consist- 
ing of particles which are small compared with the 
sample size, is not unreasonable. Given this assump- 
tion a geometric mean equation can be derived 
such that 

k m : I Ik !  Vf) i ,  (1 1) 

where ki and Vf i represent, respectively, the 
thermal conductivities and volume fractious of the 
i components. 

This equation is quoted by Wimmer et al. [29] 
in its logarithmic form and is also given in the 
two-component form 

k m = kl  1-(b)k~ (12) 

by Woodside and Messmer [12]. 

There are many empirical relationships between 
the effective conductivity of a material and the 
volume fractions of its components and their 
conductivities. A large number of these relation- 
ships take an equation derived from a model and 
include an empirical value to give the best fit to 
the available data. Chaudhary and co-workers 
[17-20] used a variation on the equation derived 
from the model shown in Fig. 4, which takes the 
form: 

[ S [ kpks 1 1-" k m = (dkp+bks)nlck--~akp , (13) 

where 

/,/ - -  

km km 
log * ~p-p + ( 1 -  q~) ks 

(14) 

Over the series of papers [17-20] n was simplified 
to [20] 

0.5 (1 -- log r 
n -- log (~(1 -- r (15) 

In the same work Chaudhary and Bhandari [20] 
gave an alternative to Equation 13 which was 
again of the same form as Equations 8 and 9 

km = (r + ( 1 -  r (k_~ + (1 ks-- r  

(16) 
where n is as before. 

Empirical expressions in the form of the 
geometric mean equation for two components 
were also proposed by Lichtenecker [24] and 
Assad [25]. The Lichtenecker equation is identical 
to Equation 12 but Assad added an empirical 
factor to give: 

k m = k s , (17) 

where e is said to be approximately rarity. 
The above equations by no means exhaust the 

list of those proposed in the past, but are con- 
sidered to be broadly representative of the general 
categories investigated. 

A limitation of all the equations is that they 
take account only of the conductivity of the 
system that arises through phonon transmission 
and gas conduction; no factors for radiative or 
convective heat transfer have been included. 
Furthermore, variations of phonon and gas con- 
duction that occur with temperature change 
are not accounted for by these models, so the 
equations are effectively iso-thermal. As such 

, - l f ~  
/ / / / ~  I J 

J 
7 

7 

-- 2"- L 

~ / ' / / / / / / / / ~ .  

/ 

Figure5The Dul~ [16] unit-cell model for two- 
component thermal conductivity calculations. 
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their application is l imited to situations in which 

radiative and convective heat transfer mechanisms 
are either not  operating or are insignificant when 
compared to phonon or gas conductivities. In the 
lat ter  case the use of  experimental  data, which, 
being "effective" eonductivities, necessarily 
account for all the heat  transfer mechanisms 
operating at a given temperature,  is permissible. 

In addit ion to the temperature l imitat ion on 
the use of  the geometric mean equations men- 
t ioned above, there are other constraints on their 
use which must be taken into account: 

(a) the arrangement of  the component  phases 
should be random; 

(b) their particle sizes should be small in 
relation to the sample size; 

(c) the components should form a simple 
physical mixture;  and 

(d) the conductivity and volume-fraction data 
must be available for the components  in the same 

condit ion as they occur in the composite.  
However, as many materials fulfil these con- 

ditions approximately,  in the majori ty of  cases, 
the above limitations are not  serious. 

T A B L E I A compilation of the equations tested and their validity over the whole range of compositions 

Equation Validity Equation number 

k S 0 2/3 + ~pp (I -- q~z,3) 

k m = k s Valid (3) 
b 

kp 
(1 - - q s )  ~ + ~-s (1 - -  (1 _~)2,3) 

k m = kp Valid (4) 

(~ + (1 --4,) ~3 -- 1 + ' ~ ( 2  --q~--(l --4,) ~3 
ks 

ksk p kp + k s 
k m - + - -  - -  * (5) 

xk  S + ykp F Z 

akskp 
k m = + bk S + ckp Valid (8) 

ks(1 - -d)  + kpd 

ksk p 1 
km = ~" --(ks(1 -- q~) + kp40 Valid (9) 

ksq5 + kp(1 -- ~b) 3 

Ic 2 k-~P c(1 --c) 1 ks 
k i n =  ks 2 + ~ ( l _ c )  2 + . . . .  Valid (10) 

ks ~Pc + (1 --c) 
ks 

k m = Hk!Vf)i Valid (11) 

= vO- q~)xZ-r k m % ,~p Valid (1 2) 

n [ kpks ]l- n 
k m = (dkp + bks) [ck:+akp j * (13) 

L - -  

km (~% + (1--~)ks)"(~ (1--~)]"-' = + ks ] Valid (16) 

[ q~176 
k i n =  k s k s .  t (17) 

*These equations cannot be checked by this method because of the presence of several unknown parameters. It must 
be noted however that both are of the same form as other equations which have been proved to be valid. 
tThe Assad [25 ] equation will be valid only if the value for c is unity for the two extreme volume fractions. 
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3. Evaluation of conductivity equations 
Each equation discussed in Section 2 will be 
considered in two ways: 

(a) Is it valid for the whole range of  compo- 
sitions in any two-phase system? 

(b) How do the values calculated from the 
equation compare with experimentally-obtained 
values for a two-phase test system? 

Each equation was examined at the two 
extremes of  r = 0 and r = 1. In the former case, 
when r = 0, the material is pure solid, and hence 
k m = ks, and in the latter, when r = 1, then k m = 
kp. Table I shows the results o f  the evaluation. 

The majority o f  the equations listed in Table I 
are valid, and those for which the check could not 
be carried out may also be valid when empirical 
values are substituted for the unknown values. 
Since it is a main aim of  the present work to select 
an expression that can be used to predict a con- 
ductivity for any material or proposed material, 
an equation is required which is valid for any 
materials system, and preferably has no empirical 
variable. This requirement eliminates Equations 5, 
8, 10, 13, 16 and 17 from consideration, even 
though they have been shown to be valid for all 
volume fractions of  solid material and porosity. 
The remaining equations, Equations 3, 4, 9, 11 
and 12, are valid at volume-fraction extremes, 
require no empirical factors in order to calculate 
conductivities, and so may be suitable for our 
purpose. 

If  curves are produced for two-component 
systems using Equations 3, 4, 9, 11 and 12 it can 
be seen (Fig. 6) that, at least for small component 
conductivity ratios, the choice of  equation from 
which to calculate the conductivity o f  a material 
is unimportant since the lines are quite closely 
grouped. However, when there are large differences 
in the conductivities o f  the two components,  the 

k I 

COMPO ENT 1 COMPONENT Z 

Figure 6 Conductivity curves calculated from Equations 
3, 4, 9, 11 and 12 for a binary system where k 1 = 2k 2 . 

*Morgan 2~-grade. 

k i 

, 3 

k 2 

COMPONENT 1 COMPONENT 2 

Figure 7 Conductivity curves calculated from Equations 
3, 4, 9, 11 and 12 for a binary system where k~ = 50k~. 

curves exhibit marked divergence, as seen in 
Fig. 7. 

It is evident that not  all the Equations rep- 
resented in Fig. 7 can reflect the true binary com- 
posite conductivity. A final selection was therefore 
made after comparison of  the conductivities calcu- 
lated for a real system with the experimentally- 
measured conductivities. 

The system chosen for this comparison was a 
porous, debased alumina.* Samples were made 
using a pressing and firing method, and a range of  
porosities was achieved by incorporation o f  acrylic 
powder which burned out during firing. Porosities 

0 . 9 Porosity = 45 vol % 

0 ' 8 46vol  ~ ~ 

0 . 7  

~ 52 v*1% 

~ O . g  

> 

u 

a 55 v01% 
z 0 '5 0 

61 vol '% 

0 - 4  ' " " " - " - - -  +.,"'~" 

62 vol % 

0 . 3 - -  ~ J 
I00 200 300 400 

S A M P L E  M E A N  T E M P E R A T U R E  ( ' C )  

Figure 8 The effective thermal conductivity of porous 
debased alumina as a function of mean sample tempera- 
ture. 
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DEBASED ALUMINA AIR 

Figure 9 Conductivity curves calculated from Equations 
3, 4, 9, 11 and 12, and experimental values for the 
debased alumina-air system. 

and pore-size distributions were subsequently 
determined by mercury porosimetry. It was found 
that greater than 90% of  the pores were in the size 
range 10 to 50/~m, that is, smaller than the con- 
vection criterion suggested b y  McAdams [30] and 
greater than the sub-micrometre size which gives 
rise to gas conduction anomalies [31]. The effec- 
tive thermal conductivities o f  the fired samples 
were measured for a range of  sample mean tem- 
peratures, using a Foseco KU-meter, and the results 

are shown in Fig. 8. 
The effective thermal conductivities of  these 

samples for a mean temperature, T, of  100~ 
were then compared with the predictions of  
Equations 3, 4, 9, 11 and 12 using 100 ~ C con- 
ductivity data for dense debased alumina [32] and 
air [33]. Fig. 9 shows the curves predicted by 
these equations, and the experimental results. 

The geometric mean equations, Equations 11 
and 12, give predicted lines which pass through the 
experimental data, suggesting that these equations 
are the most suitable as a basis from which to 
develop a computer program for prediction of  
the thermal conductivities of  multicomponent 
systems. 

As a further check on the applicability of  the 
geometric mean equations to real systems, the 
thermal conductivities of  various materials were 
calculated from their known compositions and 
the conductivities of  their components,  obtained 
from the literature [33], using Equation 11, and 
compared with measured conductivities. Direct 
measurement of  conductivities at 20 ~ C, which 
was the temperature for which literature values 
were usually quoted, was not possible with the 
Foseco instrument because it was designed for 
high-temperature use, and was inaccurate at tem- 
peratures less than 60 ~ C. However, it was found 
that, between 60 and about 300~ there was a 
straight-line relationship between conductivity and 
temperature, and the line could be extrapolated to 
give satisfactory 20~ values. Table II compares 
the predicted and measured conductivities, and in 
most cases there is good agreement, which gives 
further support to the use of  the geometric mean 
equations as a basis for computer predictions. 

As can be seen from Table II, the geometric 
mean equation, Equation 11, gives predicted 
conductivities which are in very good agreement 
with measured conductivities. This agreement is 
found even when the conditions given in Section 2 

T A B L E I I Comparison of the measured and predicted thermal conductivities of various multicomponent materials . 

Material Number of Porosity Temperature Conductivity (Win -1 K -1) 
components (vol %) (o C) Experimental Predicted 

value value 

Debase.r alumina 2 45 100 0.75 0.81 
Debased alumina 2 46 100 0.66 0.80 
Debased alumina 2 52 100 0.55 0.57 
Debased alumina 2 55 100 0.44 0.47 
Debased alumina 2 61 100 0.36 0.33 
Debased alumina 2 62 100 0.33 0.31 
Cenolite* insulation 3 88 20 0.13 0.13 
Polystyrene bead- cement -PFA 4 55 20 0.18 0.18 
PFA cenosphere-polymer 3 88 20 0.12 0.12 
Sodium silicate foam 2 97 20 0.04 0.04 
Glass fibre-A1 foil 3 97 20 0.04 0.04 
PFA cenospheres, unbonded 2 90 20 0.11 0.11 
FPA cenosphere-filled sodium 

silicate foam 3 94 20 0.09 0.08 

*Cenolite is a fire protection and thermal insulation material, based on pulverized fuel ash cenospheres [34]. 

3352 



are not strictly met, for example, in the cases 
of the glass fibre-aluminium foil mat and the 
polystyrene bead-cement composite. In the first 
case the agreement can be attributed to the high 
volume fraction of porosity, which dominates the 
effective conductivity both in experiment and 
prediction. In the latter case, however, it must be 
assumed that, in spite of the relatively large size 
of the beads, they are still small enough, when 
randomly arranged, to satisfy the conditions. 
Therefore, Equation 11 appears to be appropriate 
for a variety of insulation materials with porosities 
ranging from 50 to 97voi%, which can contain 
phases with dimensions up to 20% of the sample 
size, as long as there is random phase distribution. 
This gives confidence in the reliability of conduc- 
tivity predictions for a wide range of insulation 
materials. 

4. Computer prediction of thermal 
conductivities 

4.1. Program development 
Using Equation 11 the conductivity of a material 
after manufacture can be calculated from the 
known conductivities of its constituents and their 
volume fractions, determined from their weights 
and densities and the measured volume of the 
product. Although such employment of the 
equation for multicomponent materials may be 
useful, it is limited, and the aim of the present 
work is to develop a computer program with more 
scope, as an aid to the design and development of 
materials. It is required that conductivity data for 
the whole compositional spectrum of the system 
of interest should be able to be displayed, and this 
may be achieved conveniently by using ternary 
diagrams similar to those used in phase equilibrium 

~ A COMPONENT I 2.5 
B COMPONENT 2 0.25 
C COMPONENT 3 0.025 

E X A N P  

NIIIIIIIIIIIIIIIII I/I I / 1  ...... P=\ 
Jl I l ! l lJl/ I  ! 

Figure 10 Full and selected-area 
ternary diagrams for a hypotheti- 
cal three-component system. 
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studies. By calculating conductivities for the whole 
range of  compositions, an iso-conductivity (iso-k) 
line diagram can be constructed, from which the 
effects of composition on conductivity can readily 
be seen. Use of the geometric mean equation 
gives straight and parallel iso-k lines, and this result 
has allowed the program to be developed to 
provide, not only data, but a ternary diagram, 
using the graphics facility of a Tektronix 4051 
microprocessor. Program sub-routines have been 
developed to allow the computer to 

(a) deal with systems containing up to six 
components by arranging them into three groups, 
so that conductivity predictions can still be 
presented in the form of a ternary diagram and 

(b) magnify selected portions of a diagram and 
improve the reading accuracy by giving iso-k lines 
at smaller intervals. Fig. 10 shows full and selected- 
area diagrams for a hypothetical three-component 
system. 

4.2.  Program appl ica t ion  
As a materials design tool the computer program 
is used firstly to give the full ternary, iso-con- 
ductivity diagram for the system to be studied. 
From this initial diagram a composition field can 
then be chosen to give a material with the required 
conductivity, and a selected area from the field 
magnified. When suitable compositions have been 
found, appropriate fabrication methods can be 
selected. The program has been used in this manner 
for the development of thermal insulation materials 
based on pulverised fuel ash [35]. A copy of the 
program listing can be found in [35]. 

5. Discussion 
The published equations examined in this work all 
suffer from the need to simplify the conductivity 
problem from one in which heat is transferred by 
a complex combination of conduction, convection 
and radiation mechanisms to one in which con- 
duction only is considered. Strictly this limits 
their application to situations in which the 
non-conduction components are negligible in 
comparison with the conduction component. 

Both radiative and convective heat transfer are 
dependent on factors such as geometry, size and 
temperature gradient across pores. These factors 
are controlled by the structure of the material and 
the thermal conditions of the working environ- 
ment and, as such, are difficult to incorporate 
successfully in a predictive expression. Radiative 
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heat transfer exhibits a cubic relationship with the 
absolute temperature of the material [31] and the 
equations derived from the radiant conductivity, 
k~, are of the form 

kr = F o T  3, (18) 

where F is a function of the component materials 
and their geometric configuration, a is the Stefan- 
Boltzmann constant and T is the temperature (K). 

A more specific equation is given by Kingery 
[36] for the radiative conductivity of a small 
spherical pore 

- T )eor: dp 
kr = , (19) 

T1 --T2 
where T1 and T2 are the surface temperatures of 
the pore (K), e is the emissivity of the surface, r is 
the refractive index of the solid and dp is the pore 
diameter. 

Equation 19, although it relates to a specific 
situation of temperature gradient and pore size, is 
inadequate as a description of a real porous 
insulation in which there will be a size distribution 
of non-spherical pores and there is the likelihood 
of some radiative heat transfer through the solid 
phase. 

From this equation, however, we can see tha t  
for small pores the radiative heat transfer will be 
small, due both to the value of dp and also to the 
smaller temperature difference, AT, (T2 -- T1 = AT) 
across the pore. If, using Equation 19, the hypo- 
thetical cases are considered of spherical, air-filled 
pores of various sizes in an insulation material such 
that the temperature gradient is 200 K cm -1 then 
radiation across the pore will contribute 20% of 
the heat transfer at 400K for a 100/am diameter 
pore, 700 K for a 50/Ira diameter pore and 3000 K 
for a 5/~m diameter pore. The majority of insu- 
lation materials have pores in this range, and thus 
from a radiation heat transfer point of view the 
failure to include this mechanism up to these 
limits will not give rise to major errors. 

Convection within the cavities of a porous body 
has been discussed theoretically by McAdams [30] 
who set down criteria of pore size and tempera- 
ture gradient for onset of convection. These are 
supported by empirical data [37], which suggest 
that ordinarily the convective contribution to the 
thermal conductivity is small in comparison with 
the contributions of conduction and radiation. 
Indeed Gorring and Churchill [31] state that no 
great error occurs if convection is neglected in 
insulation materials. 



The preceding discussion has suggested that 

serious l imitations exist for all the equations 

examined in this work. If,  however, consider- 
ation is restricted to materials in which the pore 

size and the temperature differential across the 

pores are small then only small errors will result. 

These errors will be further minimized by the 
use of  experimental ly-obtained,  effective ther- 
mal conductivities which must  incorporate all 
modes of  heat  transfer at the selected tem- 

perature. 
The aim of  this work was to select an ex- 

pression from those proposed in the literature 
which gives demonstrably good agreement with 
experimental  mul t i -component  thermal conduc- 
tivities: it has been shown that  the geometric 
mean equation,  Equation 11, is the most  saris- 

factory. 

6. Conclusions 
The flux-law, Ohm's law and empirical equations 
proposed in the l i terature for the predict ion of  

the thermal conductivities of  mul t icomponent  

materials have been examined,  and their validity 
tested. 

Theoretical and experimental  evaluation o f  the 
expressions has shown that a geometric mean 
equation,  Equation 11, is the most  suitable for 
use as the basis o f  a computer  program to predict  

the thermal conductivities of  mul t icomponent  
systems. 

When used in conjunction with a microprocessor 

and graphics facility, the computer  program 
can provide ternary iso-conductivity diagrams of  
two kinds. The first, simpler opt ion,  uses the 
conductivities of  three components  (or groups of  
components)  to produce a full c o m p o s i t i o n -  
conductivi ty diagram. The second opt ion magnifies 
selected areas of  the diagram and shows smaller 
conductivity intervals. 

Use of  the geometric mean equation, Equation 
11, limits the validity o f  predictions to materials 
formed by  a physical mixing o f  known phases, o f  
small size in relation to that  of  the sample, and 
randomly mixed.  Conductivity data must be avail- 
able for the components  in the form in which they 
appear in the composite material.  

The program was used to predict  the con- 
ductivities of  a variety of  materials, and it was 
found that,  when the above conditions were 
fulfilled, there was good agreement with measured 
conductivities. 
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